Решение:
1) $$5^x = 625$$
$$5^x = 5^4$$
$$x = 4$$
2) $$4^{3x-17} = 64$$
$$4^{3x-17} = 4^3$$
$$3x - 17 = 3$$
$$3x = 20$$
$$x = \frac{20}{3}$$
3) $$(\frac{1}{2})^{2-3x} = 4^{x+7}$$
$$(2^{-1})^{2-3x} = (2^2)^{x+7}$$
$$2^{-2+3x} = 2^{2x+14}$$
$$-2 + 3x = 2x + 14$$
$$x = 16$$
4) $$5^{x+1} + 5^{x-1} = 130$$
$$5^x \cdot 5^1 + 5^x \cdot 5^{-1} = 130$$
$$5^x(5 + \frac{1}{5}) = 130$$
$$5^x(\frac{26}{5}) = 130$$
$$5^x = 130 \cdot \frac{5}{26}$$
$$5^x = 5 \cdot 5$$
$$5^x = 5^2$$
$$x = 2$$
5) $$9^x - 7 \cdot 3^x - 18 = 0$$
$$(3^2)^x - 7 \cdot 3^x - 18 = 0$$
$$(3^x)^2 - 7 \cdot 3^x - 18 = 0$$
Пусть $$t = 3^x$$, тогда
$$t^2 - 7t - 18 = 0$$
$$D = (-7)^2 - 4 \cdot 1 \cdot (-18) = 49 + 72 = 121$$
$$t_1 = \frac{7 + \sqrt{121}}{2} = \frac{7 + 11}{2} = \frac{18}{2} = 9$$
$$t_2 = \frac{7 - \sqrt{121}}{2} = \frac{7 - 11}{2} = \frac{-4}{2} = -2$$
Так как $$t = 3^x$$, то $$3^x = 9$$ или $$3^x = -2$$. Второе уравнение не имеет решений, т.к. $$3^x > 0$$ при любом x.
$$3^x = 9$$
$$3^x = 3^2$$
$$x = 2$$
6) $$20^{x^2+3x-4} = 1$$
$$20^{x^2+3x-4} = 20^0$$
$$x^2 + 3x - 4 = 0$$
$$D = 3^2 - 4 \cdot 1 \cdot (-4) = 9 + 16 = 25$$
$$x_1 = \frac{-3 + \sqrt{25}}{2} = \frac{-3 + 5}{2} = \frac{2}{2} = 1$$
$$x_2 = \frac{-3 - \sqrt{25}}{2} = \frac{-3 - 5}{2} = \frac{-8}{2} = -4$$
Ответы:
1) $$x = $$ extbf{4}
2) $$x = $$ extbf{20/3}
3) $$x = $$ extbf{16}
4) $$x = $$ extbf{2}
5) $$x = $$ extbf{2}
6) $$x_1 = $$ extbf{1}, $$x_2 = $$ extbf{-4}