345. Решите уравнение наиболее рациональным способом:
1) $$\frac{1}{2}x^2 = 3x - 4$$
$$x^2 = 6x - 8$$
$$x^2 - 6x + 8 = 0$$
По теореме Виета:
$$\begin{cases}x_1 + x_2 = 6\\x_1 \cdot x_2 = 8\end{cases}$$ Подбором находим, что $$x_1 = 2, x_2 = 4$$.
2) $$2x(12x + 5) = 8$$
$$24x^2 + 10x - 8 = 0$$
$$12x^2 + 5x - 4 = 0$$
$$D = 5^2 - 4 \cdot 12 \cdot (-4) = 25 + 192 = 217$$
$$x_1 = \frac{-5 + \sqrt{217}}{24}, x_2 = \frac{-5 - \sqrt{217}}{24}$$
3) $$11x^2 = 18x + 511$$
$$11x^2 - 18x - 511 = 0$$
$$D = (-18)^2 - 4 \cdot 11 \cdot (-511) = 324 + 22484 = 22808$$
$$x_1 = \frac{18 + \sqrt{22808}}{22}, x_2 = \frac{18 - \sqrt{22808}}{22}$$
4) $$0.7x^2 = 1.3x + 2$$
$$0.7x^2 - 1.3x - 2 = 0$$
$$7x^2 - 13x - 20 = 0$$
$$D = (-13)^2 - 4 \cdot 7 \cdot (-20) = 169 + 560 = 729 = 27^2$$
$$x_1 = \frac{13 + 27}{14} = \frac{40}{14} = \frac{20}{7}, x_2 = \frac{13 - 27}{14} = -1$$
5) $$81x^2 - 13 = 0$$
$$81x^2 = 13$$
$$x^2 = \frac{13}{81}$$
$$x_1 = \frac{\sqrt{13}}{9}, x_2 = -\frac{\sqrt{13}}{9}$$
6) $$9x^2 + 2x - 8 = 0$$
$$D = 2^2 - 4 \cdot 9 \cdot (-8) = 4 + 288 = 292$$
$$x_1 = \frac{-2 + \sqrt{292}}{18}, x_2 = \frac{-2 - \sqrt{292}}{18}$$
7) $$13x^2 - 16x + 5 = 0$$
$$D_1 = (-8)^2 - 13 \cdot 5 = 64 - 65 = -1$$
$$x_1 = \frac{8 + \sqrt{-1}}{13}, x_2 = \frac{8 - \sqrt{-1}}{13}$$
8) $$\frac{x^2}{4} - \frac{x}{3} - \frac{7}{12} = 0$$
$$3x^2 - 4x - 7 = 0$$
$$D_1 = (-2)^2 - 3 \cdot (-7) = 4 + 21 = 25$$
$$x_1 = \frac{2 + 5}{3} = \frac{7}{3}, x_2 = \frac{2 - 5}{3} = -1$$
9) $$-13x^2 - 25x = 0$$
$$x(-13x - 25) = 0$$
$$x_1 = 0, x_2 = -\frac{25}{13}$$
10) $$\frac{2}{3}x - 5 + \frac{1}{2}x^2 = 0$$
$$3x^2 + 4x - 30 = 0$$
$$D_1 = 2^2 - 3 \cdot (-30) = 4 + 90 = 94$$
$$x_1 = \frac{-2 + \sqrt{94}}{3}, x_2 = \frac{-2 - \sqrt{94}}{3}$$
11) $$43x^2 - 90x + 8 = 0$$
$$D_1 = (-45)^2 - 43 \cdot 8 = 2025 - 344 = 1681 = 41^2$$
$$x_1 = \frac{45 + 41}{43} = \frac{86}{43} = 2, x_2 = \frac{45 - 41}{43} = \frac{4}{43}$$
12) $$\frac{x^2 + x}{2} = \frac{8x - 7}{3}$$
$$3(x^2 + x) = 2(8x - 7)$$
$$3x^2 + 3x = 16x - 14$$
$$3x^2 - 13x + 14 = 0$$
$$D = (-13)^2 - 4 \cdot 3 \cdot 14 = 169 - 168 = 1$$
$$x_1 = \frac{13 + 1}{6} = \frac{14}{6} = \frac{7}{3}, x_2 = \frac{13 - 1}{6} = 2$$
Ответ: 1) $$x_1 = 2, x_2 = 4$$; 2) $$x_1 = \frac{-5 + \sqrt{217}}{24}, x_2 = \frac{-5 - \sqrt{217}}{24}$$; 3) $$x_1 = \frac{18 + \sqrt{22808}}{22}, x_2 = \frac{18 - \sqrt{22808}}{22}$$; 4) $$x_1 = \frac{20}{7}, x_2 = -1$$; 5) $$x_1 = \frac{\sqrt{13}}{9}, x_2 = -\frac{\sqrt{13}}{9}$$; 6) $$x_1 = \frac{-2 + \sqrt{292}}{18}, x_2 = \frac{-2 - \sqrt{292}}{18}$$; 7) $$x_1 = \frac{8 + \sqrt{-1}}{13}, x_2 = \frac{8 - \sqrt{-1}}{13}$$; 8) $$x_1 = \frac{7}{3}, x_2 = -1$$; 9) $$x_1 = 0, x_2 = -\frac{25}{13}$$; 10) $$x_1 = \frac{-2 + \sqrt{94}}{3}, x_2 = \frac{-2 - \sqrt{94}}{3}$$; 11) $$x_1 = 2, x_2 = \frac{4}{43}$$; 12) $$x_1 = \frac{7}{3}, x_2 = 2$$