1) (x + 5)² – (x – 1)² = 48
x² + 10x + 25 - (x² - 2x + 1) = 48
x² + 10x + 25 - x² + 2x - 1 = 48
12x + 24 = 48
12x = 24
x = 2
2) (2x – 3)² + (3 – 4x)(x + 5) = 82
4x² - 12x + 9 + 3x + 15 - 4x² - 20x = 82
-29x + 24 = 82
-29x = 58
x = -2
3) x(x – 3)(4 – x) = 16 – x(x − 3,5)²
x(4x - x² - 12 + 3x) = 16 - x(x² - 7x + 12,25)
x(7x - x² - 12) = 16 - x³ + 7x² - 12,25x
7x² - x³ - 12x = 16 - x³ + 7x² - 12,25x
7x² - x³ - 12x + x³ - 7x² + 12,25x = 16
0.25x = 16
x = 64
4) (4x - 1)² – (2x – 3)(6x + 5) = 4(x – 2)² + 16x
16x² - 8x + 1 - (12x² + 10x - 18x - 15) = 4(x² - 4x + 4) + 16x
16x² - 8x + 1 - 12x² + 8x + 15 = 4x² - 16x + 16 + 16x
4x² + 16 = 4x² + 16
0 = 0
Решением является любое число
5) (x - 1)(x + 1) = 2(x - 5)² – x(x – 3)
x² - 1 = 2(x² - 10x + 25) - x² + 3x
x² - 1 = 2x² - 20x + 50 - x² + 3x
x² - 1 = x² - 17x + 50
-1 = -17x + 50
17x = 51
x = 3