Вопрос:

6. Решите уравнение: a) (\(\frac{17}{17}\) +x) - \(\frac{10}{17}\) = \(\frac{13}{17}\); б) (x - \(\frac{53}{68}\)) + \(\frac{13}{68}\) = \(\frac{23}{68}\); в) (\(\frac{61}{71}\) - x) - \(\frac{20}{71}\) = \(\frac{16}{71}\); г) \(\frac{17}{43}\) - (x - \(\frac{28}{43}\)) = \(\frac{14}{43}\).

Смотреть решения всех заданий с листа

Ответ:

6. Решите уравнение:

a) (\(\frac{17}{17}\) + x) - \(\frac{10}{17}\) = \(\frac{13}{17}\)

\(1 + x - \frac{10}{17} = \frac{13}{17}\)

\(1 + x = \frac{13}{17} + \frac{10}{17}\)

\(1 + x = \frac{23}{17}\)

\(x = \frac{23}{17} - 1\)

\(x = \frac{23}{17} - \frac{17}{17}\)

\(x = \frac{6}{17}\)

Ответ: \(\frac{6}{17}\)

б) (x - \(\frac{53}{68}\)) + \(\frac{13}{68}\) = \(\frac{23}{68}\)

\(x - \frac{53}{68} = \frac{23}{68} - \frac{13}{68}\)

\(x - \frac{53}{68} = \frac{10}{68}\)

\(x = \frac{10}{68} + \frac{53}{68}\)

\(x = \frac{63}{68}\)

Ответ: \(\frac{63}{68}\)

в) (\(\frac{61}{71}\) - x) - \(\frac{20}{71}\) = \(\frac{16}{71}\)

\(\frac{61}{71} - x = \frac{16}{71} + \frac{20}{71}\)

\(\frac{61}{71} - x = \frac{36}{71}\)

\(x = \frac{61}{71} - \frac{36}{71}\)

\(x = \frac{25}{71}\)

Ответ: \(\frac{25}{71}\)

г) \(\frac{17}{43}\) - (x - \(\frac{28}{43}\)) = \(\frac{14}{43}\)

\(\frac{17}{43} - x + \frac{28}{43} = \frac{14}{43}\)

\(\frac{17}{43} + \frac{28}{43} - x = \frac{14}{43}\)

\(\frac{45}{43} - x = \frac{14}{43}\)

\(x = \frac{45}{43} - \frac{14}{43}\)

\(x = \frac{31}{43}\)

Ответ: \(\frac{31}{43}\)

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие