а) Решим уравнение:
\begin{aligned}
\frac{x^2 - 1}{2} - 11x &= 11 \\
\frac{x^2 - 1}{2} &= 11x + 11 \\
x^2 - 1 &= 2(11x + 11) \\
x^2 - 1 &= 22x + 22 \\
x^2 - 22x - 1 - 22 &= 0 \\
x^2 - 22x - 23 &= 0
\end{aligned}
Найдем дискриминант:
\begin{aligned}
D &= (-22)^2 - 4 \cdot 1 \cdot (-23) = 484 + 92 = 576 \\
\sqrt{D} &= \sqrt{576} = 24
\end{aligned}
Найдем корни:
\begin{aligned}
x_1 &= \frac{-(-22) + 24}{2 \cdot 1} = \frac{22 + 24}{2} = \frac{46}{2} = 23 \\
x_2 &= \frac{-(-22) - 24}{2 \cdot 1} = \frac{22 - 24}{2} = \frac{-2}{2} = -1
\end{aligned}
Ответ: x₁ = 23, x₂ = -1
б) Решим уравнение:
\begin{aligned}
\frac{x^2 + x}{2} &= \frac{8x - 7}{3} \\
3(x^2 + x) &= 2(8x - 7) \\
3x^2 + 3x &= 16x - 14 \\
3x^2 + 3x - 16x + 14 &= 0 \\
3x^2 - 13x + 14 &= 0
\end{aligned}
Найдем дискриминант:
\begin{aligned}
D &= (-13)^2 - 4 \cdot 3 \cdot 14 = 169 - 168 = 1 \\
\sqrt{D} &= \sqrt{1} = 1
\end{aligned}
Найдем корни:
\begin{aligned}
x_1 &= \frac{-(-13) + 1}{2 \cdot 3} = \frac{13 + 1}{6} = \frac{14}{6} = \frac{7}{3} \\
x_2 &= \frac{-(-13) - 1}{2 \cdot 3} = \frac{13 - 1}{6} = \frac{12}{6} = 2
\end{aligned}
Ответ: x_1 = \frac{7}{3}, x_2 = 2
в) Решим уравнение:
\begin{aligned}
\frac{4x^2 - 1}{3} &= x(10x - 9) \\
4x^2 - 1 &= 3(10x^2 - 9x) \\
4x^2 - 1 &= 30x^2 - 27x \\
4x^2 - 30x^2 + 27x - 1 &= 0 \\
-26x^2 + 27x - 1 &= 0 \\
26x^2 - 27x + 1 &= 0
\end{aligned}
Найдем дискриминант:
\begin{aligned}
D &= (-27)^2 - 4 \cdot 26 \cdot 1 = 729 - 104 = 625 \\
\sqrt{D} &= \sqrt{625} = 25
\end{aligned}
Найдем корни:
\begin{aligned}
x_1 &= \frac{-(-27) + 25}{2 \cdot 26} = \frac{27 + 25}{52} = \frac{52}{52} = 1 \\
x_2 &= \frac{-(-27) - 25}{2 \cdot 26} = \frac{27 - 25}{52} = \frac{2}{52} = \frac{1}{26}
\end{aligned}
Ответ: x_1 = 1, x_2 = \frac{1}{26}
г) Решим уравнение:
\begin{aligned}
\frac{3}{4}x^2 - \frac{2}{5}x &= \frac{4}{5}x^2 + \frac{3}{4} \\
\frac{3}{4}x^2 - \frac{4}{5}x^2 - \frac{2}{5}x - \frac{3}{4} &= 0 \\
\frac{15x^2 - 16x^2}{20} - \frac{2}{5}x - \frac{3}{4} &= 0 \\
-\frac{1}{20}x^2 - \frac{2}{5}x - \frac{3}{4} &= 0 \\
\frac{1}{20}x^2 + \frac{2}{5}x + \frac{3}{4} &= 0 \\
x^2 + 8x + 15 &= 0
\end{aligned}
Найдем дискриминант:
\begin{aligned}
D &= 8^2 - 4 \cdot 1 \cdot 15 = 64 - 60 = 4 \\
\sqrt{D} &= \sqrt{4} = 2
\end{aligned}
Найдем корни:
\begin{aligned}
x_1 &= \frac{-8 + 2}{2 \cdot 1} = \frac{-6}{2} = -3 \\
x_2 &= \frac{-8 - 2}{2 \cdot 1} = \frac{-10}{2} = -5
\end{aligned}
Ответ: x₁ = -3, x₂ = -5