Решение:
1. \(2 \cos x + \sqrt{3} = 0\)
\(\cos x = -\frac{\sqrt{3}}{2}\)
\(x = \pm \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z}\)
2. \(\sin (2x - \frac{\pi}{3}) + 1 = 0\)
\(\sin (2x - \frac{\pi}{3}) = -1\)
\(2x - \frac{\pi}{3} = -\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}\)
\(2x = \frac{\pi}{3} - \frac{\pi}{2} + 2\pi k\)
\(2x = -\frac{\pi}{6} + 2\pi k\)
\(x = -\frac{\pi}{12} + \pi k, k \in \mathbb{Z}\)
3. \(\cos^2 x + 3\sin x - 3 = 0\)
\(1 - \sin^2 x + 3\sin x - 3 = 0\)
\(-\sin^2 x + 3\sin x - 2 = 0\)
\(\sin^2 x - 3\sin x + 2 = 0\)
Пусть \(t = \sin x\), тогда \(t^2 - 3t + 2 = 0\)
\(D = 9 - 8 = 1\)
\(t_1 = \frac{3 + 1}{2} = 2\), \(t_2 = \frac{3 - 1}{2} = 1\)
\(\sin x = 2\) (нет решений)
\(\sin x = 1\)
\(x = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}\)
4. \(3 \sin^2 x = 2 \sin x \cos x + \cos^2 x\)
\(3 \sin^2 x - 2 \sin x \cos x - \cos^2 x = 0\)
Разделим обе части на \(\cos^2 x\) (если \(\cos x = 0\), то \(\sin x = \pm 1\), и уравнение не выполняется)
\(3 \tan^2 x - 2 \tan x - 1 = 0\)
Пусть \(t = \tan x\), тогда \(3t^2 - 2t - 1 = 0\)
\(D = 4 + 12 = 16\)
\(t_1 = \frac{2 + 4}{6} = 1\), \(t_2 = \frac{2 - 4}{6} = -\frac{1}{3}\)
\(\tan x = 1\) или \(\tan x = -\frac{1}{3}\)
\(x = \frac{\pi}{4} + \pi k, k \in \mathbb{Z}\) или \(x = -\arctan(\frac{1}{3}) + \pi k, k \in \mathbb{Z}\)
5. \(5 \sin^2 x - 2 \sin x \cos x + \cos^2 x = 4\)
\(5 \sin^2 x - 2 \sin x \cos x + \cos^2 x = 4(\sin^2 x + \cos^2 x)\)
\(5 \sin^2 x - 2 \sin x \cos x + \cos^2 x = 4 \sin^2 x + 4 \cos^2 x\)
\(\sin^2 x - 2 \sin x \cos x - 3 \cos^2 x = 0\)
Разделим обе части на \(\cos^2 x\) (если \(\cos x = 0\), то \(\sin x = \pm 1\), и уравнение выполняется)
\(\tan^2 x - 2 \tan x - 3 = 0\)
Пусть \(t = \tan x\), тогда \(t^2 - 2t - 3 = 0\)
\(D = 4 + 12 = 16\)
\(t_1 = \frac{2 + 4}{2} = 3\), \(t_2 = \frac{2 - 4}{2} = -1\)
\(\tan x = 3\) или \(\tan x = -1\)
\(x = \arctan(3) + \pi k, k \in \mathbb{Z}\) или \(x = -\frac{\pi}{4} + \pi k, k \in \mathbb{Z}\)
6. \(\sin 2x = \sqrt{3} \cos 2x\)
\(\tan 2x = \sqrt{3}\)
\(2x = \frac{\pi}{3} + \pi k, k \in \mathbb{Z}\)
\(x = \frac{\pi}{6} + \frac{\pi k}{2}, k \in \mathbb{Z}\)
Находим корни на отрезке \([-1; 6]\): \([-1; 6] \approx [-0.318\pi; 1.91\pi]\)
\(x = \frac{\pi}{6}, \frac{2\pi}{3}, \frac{7\pi}{6}, \frac{5\pi}{3}\)
Приблизительные значения: \(0.52, 2.09, 3.66, 5.23\)
Все корни попадают в указанный отрезок.