Вопрос:

Решите уравнения: a) $$9\frac{16}{51} + 2x = 4\frac{11}{34}$$ б) $$3z + 2\frac{11}{52} = 7\frac{5}{39}$$ в) $$0.2(5y - 2) - 0.3(2y - 1) = -0.9$$ г) $$0.3(5x - 7) - 3(0.2x + 3.2) = 0$$ д) $$3(0.4x + 7) - 4(0.8x - 3) = 2$$ e) $$0.7x - 1.82 - 0.8x = 3.46$$

Ответ:

Решение уравнений:

а) $$9\frac{16}{51} + 2x = 4\frac{11}{34}$$

$$\frac{475}{51} + 2x = \frac{147}{34}$$ $$2x = \frac{147}{34} - \frac{475}{51}$$ $$2x = \frac{147 \cdot 3 - 475 \cdot 2}{102}$$ $$2x = \frac{441 - 950}{102}$$ $$2x = \frac{-509}{102}$$ $$x = \frac{-509}{204}$$ $$x = -2\frac{101}{204}$$

Ответ: $$x = -2\frac{101}{204}$$

б) $$3z + 2\frac{11}{52} = 7\frac{5}{39}$$

$$3z + \frac{115}{52} = \frac{278}{39}$$ $$3z = \frac{278}{39} - \frac{115}{52}$$ $$3z = \frac{278 \cdot 4 - 115 \cdot 3}{156}$$ $$3z = \frac{1112 - 345}{156}$$ $$3z = \frac{767}{156}$$ $$z = \frac{767}{468}$$ $$z = 1\frac{299}{468}$$

Ответ: $$z = 1\frac{299}{468}$$

в) $$0.2(5y - 2) - 0.3(2y - 1) = -0.9$$

$$y - 0.4 - 0.6y + 0.3 = -0.9$$ $$0.4y - 0.1 = -0.9$$ $$0.4y = -0.8$$ $$y = -2$$

Ответ: $$y = -2$$

г) $$0.3(5x - 7) - 3(0.2x + 3.2) = 0$$

$$1.5x - 2.1 - 0.6x - 9.6 = 0$$ $$0.9x - 11.7 = 0$$ $$0.9x = 11.7$$ $$x = \frac{11.7}{0.9}$$ $$x = 13$$

Ответ: $$x = 13$$

д) $$3(0.4x + 7) - 4(0.8x - 3) = 2$$

$$1.2x + 21 - 3.2x + 12 = 2$$ $$-2x + 33 = 2$$ $$-2x = -31$$ $$x = 15.5$$

Ответ: $$x = 15.5$$

е) $$0.7x - 1.82 - 0.8x = 3.46$$

$$-0.1x - 1.82 = 3.46$$ $$-0.1x = 5.28$$ $$x = -52.8$$

Ответ: $$x = -52.8$$

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие