Решение уравнений:
а) $$9\frac{16}{51} + 2x = 4\frac{11}{34}$$
$$\frac{475}{51} + 2x = \frac{147}{34}$$
$$2x = \frac{147}{34} - \frac{475}{51}$$
$$2x = \frac{147 \cdot 3 - 475 \cdot 2}{102}$$
$$2x = \frac{441 - 950}{102}$$
$$2x = \frac{-509}{102}$$
$$x = \frac{-509}{204}$$
$$x = -2\frac{101}{204}$$
Ответ: $$x = -2\frac{101}{204}$$
б) $$3z + 2\frac{11}{52} = 7\frac{5}{39}$$
$$3z + \frac{115}{52} = \frac{278}{39}$$
$$3z = \frac{278}{39} - \frac{115}{52}$$
$$3z = \frac{278 \cdot 4 - 115 \cdot 3}{156}$$
$$3z = \frac{1112 - 345}{156}$$
$$3z = \frac{767}{156}$$
$$z = \frac{767}{468}$$
$$z = 1\frac{299}{468}$$
Ответ: $$z = 1\frac{299}{468}$$
в) $$0.2(5y - 2) - 0.3(2y - 1) = -0.9$$
$$y - 0.4 - 0.6y + 0.3 = -0.9$$
$$0.4y - 0.1 = -0.9$$
$$0.4y = -0.8$$
$$y = -2$$
Ответ: $$y = -2$$
г) $$0.3(5x - 7) - 3(0.2x + 3.2) = 0$$
$$1.5x - 2.1 - 0.6x - 9.6 = 0$$
$$0.9x - 11.7 = 0$$
$$0.9x = 11.7$$
$$x = \frac{11.7}{0.9}$$
$$x = 13$$
Ответ: $$x = 13$$
д) $$3(0.4x + 7) - 4(0.8x - 3) = 2$$
$$1.2x + 21 - 3.2x + 12 = 2$$
$$-2x + 33 = 2$$
$$-2x = -31$$
$$x = 15.5$$
Ответ: $$x = 15.5$$
е) $$0.7x - 1.82 - 0.8x = 3.46$$
$$-0.1x - 1.82 = 3.46$$
$$-0.1x = 5.28$$
$$x = -52.8$$
Ответ: $$x = -52.8$$