Контрольные задания > 5. Серединный перпендикуляр стороны АВ треугольника АВС пересекает его сторону АС в точке М. Найдите сторону АС треугольника АВС, если ВС = 8 см, а периметр треугольника МВС равен 25 см.
Вопрос:
5. Серединный перпендикуляр стороны АВ треугольника АВС пересекает его сторону АС в точке М. Найдите сторону АС треугольника АВС, если ВС = 8 см, а периметр треугольника МВС равен 25 см.
Ответ:
Пусть (d) – серединный перпендикуляр к стороне AB. Так как точка M лежит на серединном перпендикуляре, то (AM = BM). Периметр треугольника MBC равен сумме длин его сторон:
\[P_{MBC} = MB + BC + MC = 25\ \text{см}\]
Заменим (MB) на (AM):
\[AM + BC + MC = 25\ \text{см}\]
Но (AM + MC = AC), тогда
\[AC + BC = 25\ \text{см}\]
Так как (BC = 8) см, то
\[AC + 8 = 25\ \text{см}\]
\[AC = 25 - 8 = 17\ \text{см}\]
Ответ: (AC = 17) см.