a) Длина прямоугольника = ширина + \(\frac{5}{52}\) м
Длина = \(3 \frac{3}{26} + \frac{5}{52}\) = \(\frac{3 \cdot 26 + 3}{26} + \frac{5}{52}\) = \(\frac{78 + 3}{26} + \frac{5}{52}\) = \(\frac{81}{26} + \frac{5}{52}\) = \(\frac{81 \cdot 2}{26 \cdot 2} + \frac{5}{52}\) = \(\frac{162}{52} + \frac{5}{52}\) = \(\frac{162 + 5}{52}\) = \(\frac{167}{52}\) = 3 \(\frac{11}{52}\) м
б) Периметр прямоугольника = 2 * (длина + ширина)
Периметр = 2 * ( \(3 \frac{3}{26}\) + 3 \(\frac{11}{52}\)) = 2 * (\(\frac{81}{26}\) + \(\frac{167}{52}\)) = 2 * (\(\frac{81 \cdot 2}{26 \cdot 2}\) + \(\frac{167}{52}\)) = 2 * (\(\frac{162}{52}\) + \(\frac{167}{52}\)) = 2 * \(\frac{162 + 167}{52}\) = 2 * \(\frac{329}{52}\) = \(\frac{329}{26}\) = 12 \(\frac{17}{26}\) м
в) Периметр увеличится на 2 * (\(\frac{2}{65}\) + \(\frac{3}{78}\)) = 2 * (\(\frac{2 \cdot 6}{65 \cdot 6}\) + \(\frac{3 \cdot 5}{78 \cdot 5}\)) = 2 * (\(\frac{12}{390}\) + \(\frac{15}{390}\)) = 2 * \(\frac{12 + 15}{390}\) = 2 * \(\frac{27}{390}\) = \(\frac{27}{195}\) = \(\frac{9}{65}\) м
Ответ: а) 3 \(\frac{11}{52}\) м; б) 12 \(\frac{17}{26}\) м; в) \(\frac{9}{65}\) м