Контрольные задания > Случайный опыт может закончиться одним из трёх элементарных событий: a, b, c. Чему равна вероятность элементарного события c, если: P(a) = 0,25; P(b) = 0,2?
Вопрос:
Случайный опыт может закончиться одним из трёх элементарных событий: a, b, c. Чему равна вероятность элементарного события c, если: P(a) = 0,25; P(b) = 0,2?
Ответ:
Давай разберёмся с этой задачей по теории вероятностей.
**Основные понятия**
* **Элементарные события** – это самые простые исходы какого-либо случайного эксперимента. В нашем случае это события a, b и c.
* **Вероятность** – это числовая мера, характеризующая степень возможности наступления некоторого события.
* **Сумма вероятностей** всех элементарных событий равна 1 (или 100%).
**Решение**
1. Из условия задачи мы знаем вероятности двух элементарных событий:
* P(a) = 0.25
* P(b) = 0.2
2. Нам нужно найти вероятность события c, то есть P(c).
3. Так как a, b и c являются всеми возможными исходами, то сумма их вероятностей равна 1:
\[P(a) + P(b) + P(c) = 1\]
4. Подставим известные значения:
\[0.25 + 0.2 + P(c) = 1\]
5. Сложим известные вероятности:
\[0.45 + P(c) = 1\]
6. Теперь, чтобы найти P(c), вычтем 0.45 из обеих частей уравнения:
\[P(c) = 1 - 0.45\]
7. Получаем вероятность события c:
\[P(c) = 0.55\]
**Ответ:** Вероятность элементарного события c равна 0.55.