Контрольные задания >
13. Сократите дробь:
1) $$rac{6m}{18n}$$; 3) $$rac{16p^3}{48p^5}$$; 4) $$rac{4mn^2q}{28m^2nq^3}$$;
14. Сократите дробь:
1) $$rac{5a + 20m}{5a}$$; 2) $$rac{2p - 14q}{3p - 21q}$$; 3) $$rac{x^2 - 36}{4x + 24}$$;
4) $$rac{10x^2 - 2x}{3 - 15x}$$; 5) $$rac{a^2 - 64}{a^2 + 16a + 64}$$; 6) $$rac{m^6 - m^4}{m - m^3}$$; 7) $$rac{m^3 - 125}{4m - 20}$$; 8) $$rac{4m^2 - 4m + 4}{12m^3 + 12}$$; 9) $$rac{bx + by + 2x + 2y}{4 - b^2}$$
Вопрос:
13. Сократите дробь:
1) $$rac{6m}{18n}$$; 3) $$rac{16p^3}{48p^5}$$; 4) $$rac{4mn^2q}{28m^2nq^3}$$;
14. Сократите дробь:
1) $$rac{5a + 20m}{5a}$$; 2) $$rac{2p - 14q}{3p - 21q}$$; 3) $$rac{x^2 - 36}{4x + 24}$$;
4) $$rac{10x^2 - 2x}{3 - 15x}$$; 5) $$rac{a^2 - 64}{a^2 + 16a + 64}$$; 6) $$rac{m^6 - m^4}{m - m^3}$$; 7) $$rac{m^3 - 125}{4m - 20}$$; 8) $$rac{4m^2 - 4m + 4}{12m^3 + 12}$$; 9) $$rac{bx + by + 2x + 2y}{4 - b^2}$$
Ответ:
- $$rac{6m}{18n} = \frac{6m}{6 \cdot 3n} = \frac{m}{3n}$$
- $$\frac{16p^3}{48p^5} = \frac{16p^3}{16p^3 \cdot 3p^2} = \frac{1}{3p^2}$$
- $$\frac{4mn^2q}{28m^2nq^3} = \frac{4mn^2q}{4mnq \cdot 7mq^2} = \frac{n}{7mq^2}$$
- $$\frac{5a + 20m}{5a} = \frac{5(a + 4m)}{5a} = \frac{a + 4m}{a}$$
- $$\frac{2p - 14q}{3p - 21q} = \frac{2(p - 7q)}{3(p - 7q)} = \frac{2}{3}$$
- $$\frac{x^2 - 36}{4x + 24} = \frac{(x - 6)(x + 6)}{4(x + 6)} = \frac{x - 6}{4}$$
- $$\frac{10x^2 - 2x}{3 - 15x} = \frac{2x(5x - 1)}{3(1 - 5x)} = -\frac{2x}{3}$$
- $$\frac{a^2 - 64}{a^2 + 16a + 64} = \frac{(a - 8)(a + 8)}{(a + 8)^2} = \frac{a - 8}{a + 8}$$
- $$\frac{m^6 - m^4}{m - m^3} = \frac{m^4(m^2 - 1)}{m(1 - m^2)} = \frac{m^4(m^2 - 1)}{-m(m^2 - 1)} = -m^3$$
- $$\frac{m^3 - 125}{4m - 20} = \frac{(m - 5)(m^2 + 5m + 25)}{4(m - 5)} = \frac{m^2 + 5m + 25}{4}$$
- $$\frac{4m^2 - 4m + 4}{12m^3 + 12} = \frac{4(m^2 - m + 1)}{12(m^3 + 1)} = \frac{m^2 - m + 1}{3(m + 1)(m^2 - m + 1)} = \frac{1}{3(m + 1)}$$
- $$\frac{bx + by + 2x + 2y}{4 - b^2} = \frac{b(x + y) + 2(x + y)}{(2 - b)(2 + b)} = \frac{(b + 2)(x + y)}{(2 - b)(2 + b)} = \frac{x + y}{2 - b}$$
Смотреть решения всех заданий с листаПохожие