Let's solve the equation cos(x) + cos(3x) = 0.
We can use the sum-to-product formula for cosines, which states that:
$$cos(a) + cos(b) = 2 \cdot cos(\frac{a+b}{2}) \cdot cos(\frac{a-b}{2})$$
In our case, a = x and b = 3x. Therefore, we have:
$$cos(x) + cos(3x) = 2 \cdot cos(\frac{x+3x}{2}) \cdot cos(\frac{x-3x}{2}) = 0$$
Simplify the arguments of the cosines:
$$2 \cdot cos(\frac{4x}{2}) \cdot cos(\frac{-2x}{2}) = 0$$
$$2 \cdot cos(2x) \cdot cos(-x) = 0$$
Since cosine is an even function, cos(-x) = cos(x). Thus, we have:
$$2 \cdot cos(2x) \cdot cos(x) = 0$$
This equation is satisfied if either cos(2x) = 0 or cos(x) = 0.
Case 1: cos(x) = 0
$$x = \frac{\pi}{2} + \pi k, \quad k \in \mathbb{Z}$$
Case 2: cos(2x) = 0
$$2x = \frac{\pi}{2} + \pi n, \quad n \in \mathbb{Z}$$
$$x = \frac{\pi}{4} + \frac{\pi}{2} n, \quad n \in \mathbb{Z}$$
So, the solutions are:
$$x = \frac{\pi}{2} + \pi k, \quad k \in \mathbb{Z}$$
and
$$x = \frac{\pi}{4} + \frac{\pi}{2} n, \quad n \in \mathbb{Z}$$
We can combine these solutions into a more compact form. Notice that when n is odd, say n = 2k+1, then
$$x = \frac{\pi}{4} + \frac{\pi}{2}(2k+1) = \frac{\pi}{4} + \pi k + \frac{\pi}{2} = \frac{3\pi}{4} + \pi k$$
And when n is even, say n = 2k, then
$$x = \frac{\pi}{4} + \frac{\pi}{2}(2k) = \frac{\pi}{4} + \pi k$$
So the general solution is:
$$x = \frac{\pi}{4} + \frac{\pi}{2} k, \quad k \in \mathbb{Z}$$
Answer: $$x = \frac{\pi}{4} + \frac{\pi}{2} k, \quad k \in \mathbb{Z}$$