Вопрос:

Solve the following expression: $$36 \frac{1}{5} - \left(1 - \frac{1}{5}\right) =$$

Ответ:

Okay, let's solve this expression step by step. First, we need to calculate the value inside the parentheses: $$1 - \frac{1}{5}$$ To subtract the fraction from the whole number, we need to express 1 as a fraction with a denominator of 5: $$1 = \frac{5}{5}$$ So, the expression inside the parentheses becomes: $$\frac{5}{5} - \frac{1}{5} = \frac{5-1}{5} = \frac{4}{5}$$ Now we substitute this back into the original expression: $$36 \frac{1}{5} - \frac{4}{5}$$ We can rewrite the mixed number as an improper fraction: $$36 \frac{1}{5} = \frac{36 \times 5 + 1}{5} = \frac{180 + 1}{5} = \frac{181}{5}$$ Now our expression looks like this: $$\frac{181}{5} - \frac{4}{5}$$ Since the denominators are the same, we can subtract the numerators: $$\frac{181 - 4}{5} = \frac{177}{5}$$ Now, let's convert the improper fraction back into a mixed number. We divide 177 by 5: $$177 \div 5 = 35 \text{ with a remainder of } 2$$ So, the mixed number is: $$35 \frac{2}{5}$$ Answer: $$35 \frac{2}{5}$$
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие