\[|18,4| = 18,4\]
\[|-18,04| = 18,04\]
\[18,4 > 18,04\]
Следовательно, \(|18,4| > |-18,04|\)
\[|\frac{1}{2}| = \frac{1}{2} = \frac{2}{4}\]
\[|-\frac{3}{4}| = \frac{3}{4}\]
\[\frac{2}{4} < \frac{3}{4}\]
Следовательно, \(|\frac{1}{2}| < |-\frac{3}{4}|\)
\[|\frac{11}{12}| = \frac{11}{12}\]
\[|-\frac{11}{13}| = \frac{11}{13}\]
Приведем к общему знаменателю: \(\frac{11}{12} = \frac{143}{156}\), \(\frac{11}{13} = \frac{132}{156}\)
\[\frac{143}{156} > \frac{132}{156}\]
Следовательно, \(|\frac{11}{12}| > |-\frac{11}{13}|\)
\[|-\frac{7}{6}| = \frac{7}{6}\]
\[|-\frac{6}{7}| = \frac{6}{7}\]
Приведем к общему знаменателю: \(\frac{7}{6} = \frac{49}{42}\), \(\frac{6}{7} = \frac{36}{42}\)
\[\frac{49}{42} > \frac{36}{42}\]
Следовательно, \(|-\frac{7}{6}| > |-\frac{6}{7}|\)
\[|-\frac{11}{120}| = \frac{11}{120}\]
\[|-\frac{7}{40}| = \frac{7}{40} = \frac{21}{120}\]
\[\frac{11}{120} < \frac{21}{120}\]
Следовательно, \(|-\frac{11}{120}| < |-\frac{7}{40}|\)
\[|-1| = 1 = \frac{3}{3}\]
\[|-\frac{1}{3}| = \frac{1}{3}\]
\[\frac{3}{3} > \frac{1}{3}\]
Следовательно, \(|-1| > |-\frac{1}{3}|\)