$$3 \cdot 2^{3}$$ и $$3^{2} \cdot 2^{2}$$
$$3 \cdot 2^{3} = 3 \cdot 8 = 24$$
$$3^{2} \cdot 2^{2} = 9 \cdot 4 = 36$$
24 < 36
Ответ: $$3 \cdot 2^{3} < 3^{2} \cdot 2^{2}$$
$$3^{3} \cdot 2$$ и $$3^{2} \cdot 2^{2}$$
$$3^{3} \cdot 2 = 27 \cdot 2 = 54$$
$$3^{2} \cdot 2^{2} = 9 \cdot 4 = 36$$
54 > 36
Ответ: $$3^{3} \cdot 2 > 3^{2} \cdot 2^{2}$$
$$3^{3} \cdot 2^{2}$$ и $$3^{2} \cdot 2^{3}$$
$$3^{3} \cdot 2^{2} = 27 \cdot 4 = 108$$
$$3^{2} \cdot 2^{3} = 9 \cdot 8 = 72$$
108 > 72
Ответ: $$3^{3} \cdot 2^{2} > 3^{2} \cdot 2^{3}$$