Контрольные задания > 2. Существует ли такой треугольник АВС, у которого:
2.1. ∠А – прямой;
∠В – острый;
∠С – острый;
2.2. ∠А – острый;
∠В – тупой;
∠С – острый.
Вопрос:
2. Существует ли такой треугольник АВС, у которого:
2.1. ∠А – прямой;
∠В – острый;
∠С – острый;
2.2. ∠А – острый;
∠В – тупой;
∠С – острый.
Ответ:
2.1. Нет, такого треугольника не существует, т.к. в треугольнике может быть только один прямой угол. Если ∠А - прямой (90°), а ∠В и ∠С - острые (меньше 90°), то сумма всех трех углов будет меньше 180°, что противоречит теореме о сумме углов треугольника.
2.2. Да, такой треугольник существует. Сумма углов треугольника равна 180°. Если ∠А - острый (меньше 90°), ∠В - тупой (больше 90°, но меньше 180°), и ∠С - острый (меньше 90°), то сумма всех трех углов может быть равна 180°. Например, ∠А = 40°, ∠В = 120°, ∠С = 20°.