Для того чтобы решить уравнение $$(x - 5)(x - 1) - 21 = 0$$, нужно раскрыть скобки и привести подобные слагаемые.
- Раскроем скобки:
$$(x - 5)(x - 1) = x^2 - x - 5x + 5 = x^2 - 6x + 5$$
- Подставим полученное выражение в исходное уравнение:
$$x^2 - 6x + 5 - 21 = 0$$
$$x^2 - 6x - 16 = 0$$
- Решим квадратное уравнение через дискриминант:
- Дискриминант: $$D = b^2 - 4ac = (-6)^2 - 4 \cdot 1 \cdot (-16) = 36 + 64 = 100$$
- Корни уравнения:
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{6 + \sqrt{100}}{2 \cdot 1} = \frac{6 + 10}{2} = \frac{16}{2} = 8$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{6 - \sqrt{100}}{2 \cdot 1} = \frac{6 - 10}{2} = \frac{-4}{2} = -2$$
- Запишем корни в порядке возрастания.
Ответ: -28