Рассмотрим выражение: \(\left(\frac{1}{4a}-\frac{1}{5b}\right):\left(\frac{b}{4}-\frac{a}{5}\right)\)
Преобразуем выражение:
\(\left(\frac{1}{4a}-\frac{1}{5b}\right):\left(\frac{b}{4}-\frac{a}{5}\right) = \frac{\frac{1}{4a}-\frac{1}{5b}}{\frac{b}{4}-\frac{a}{5}} = \frac{\frac{5b-4a}{20ab}}{\frac{5b-4a}{20}} = \frac{5b-4a}{20ab} \cdot \frac{20}{5b-4a} = \frac{1}{ab}\)
Подставим значения \(a = \sqrt{32}\) и \(b = \frac{1}{\sqrt{2}}\):
\(\frac{1}{ab} = \frac{1}{\sqrt{32} \cdot \frac{1}{\sqrt{2}}} = \frac{1}{\frac{\sqrt{32}}{\sqrt{2}}} = \frac{1}{\sqrt{\frac{32}{2}}} = \frac{1}{\sqrt{16}} = \frac{1}{4}\)
Ответ: \(\frac{1}{4}\)