Вопрос:

17. Тип 9.1 № 1560 У Вити есть конфеты: 6 апельсиновых, 7 клубничных, 9 лимонных и 8 вишнёвых. Витя хочет разложить все конфеты в несколько пакетиков так, чтобы ни в одном пакетике не было двух одинаковых конфет и чтобы во всех пакетиках конфет было одинаковое количество. Какое самое маленькое количество пакетиков сможет собрать Витя?

Смотреть решения всех заданий с листа

Ответ:

Чтобы найти наименьшее количество пакетиков, необходимо разложить конфеты так, чтобы в каждом пакетике было максимальное количество конфет разных видов. Так как количество конфет каждого вида разное (6, 7, 9 и 8), то мы можем положить в каждый пакетик по одной конфете каждого вида. Тогда количество пакетиков будет равно 1, так как мы должны использовать все конфеты и в каждом пакетике должно быть одинаковое количество конфет. Общее количество конфет: $$6 + 7 + 9 + 8 = 30$$ конфет. Значит, минимальное количество пакетиков - 1, в котором будет 30 конфет. Однако, если требуется разложить конфеты таким образом, чтобы в каждом пакетике было одинаковое количество конфет, то нужно найти наибольший общий делитель для чисел 6, 7, 9 и 8. Но так как в условии сказано, что не должно быть двух одинаковых конфет в одном пакетике, то нужно рассматривать все конфеты вместе. Общее количество конфет: $$6 + 7 + 9 + 8 = 30$$ Чтобы найти наименьшее количество пакетиков, нужно разложить конфеты так, чтобы в каждом пакетике было минимальное количество конфет. Варианты разбиения 30 на множители: $$30 = 1 \cdot 30 = 2 \cdot 15 = 3 \cdot 10 = 5 \cdot 6$$ Если у нас 2 пакетика, то в каждом должно быть по 15 конфет. Это возможно. Если у нас 3 пакетика, то в каждом должно быть по 10 конфет. Это возможно. Если у нас 5 пакетиков, то в каждом должно быть по 6 конфет. Это возможно. Если у нас 6 пакетиков, то в каждом должно быть по 5 конфет. Это возможно. Так как нас просят найти *наименьшее* количество пакетиков, то это 2. Ответ: 2
ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие