Найдем значение выражения:
$$ \frac{xy+y^2}{18x} \cdot \frac{9x}{x+y} $$
Упростим выражение:
$$ \frac{y(x+y)}{18x} \cdot \frac{9x}{x+y} = \frac{9xy(x+y)}{18x(x+y)} = \frac{y}{2} $$
Подставим значения х и у в упрощенное выражение:
$$ \frac{y}{2} = \frac{-0,4}{2} = -0,2 $$
Ответ: -0,2