Вопрос:

Угол $$A$$ трапеции $$ABCD$$ с основаниями $$AD$$ и $$BC$$, вписанной в окружность, равен $$35°$$. Найдите угол $$B$$ этой трапеции. Ответ дайте в градусах.

Ответ:

Трапеция $$ABCD$$ вписана в окружность. Это означает, что она является равнобедренной. Углы при одном основании в равнобедренной трапеции равны, а сумма углов, прилежащих к боковой стороне, равна 180 градусам.

Так как угол $$A$$ равен $$35°$$, то угол $$D$$ также равен $$35°$$. Угол $$B$$ является углом, прилежащим к боковой стороне $$AB$$. Следовательно, угол $$A +$$ угол $$B = 180°$$.

Тогда угол $$B = 180° - 35° = 145°$$.

Ответ: 145

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие