Для того чтобы функция существовала, необходимо, чтобы подкоренные выражения были неотрицательными. Решим каждое неравенство.
а)
1. $$25 - x^2 \ge 0$$ и $$9x - x^2 - 14 \ge 0$$.
2. $$x^2 \le 25$$ и $$x^2 - 9x + 14 \le 0$$.
3. $$-5 \le x \le 5$$ и $$(x-2)(x-7) \le 0$$.
4. $$-5 \le x \le 5$$ и $$2 \le x \le 7$$.
5. Область определения: $$2 \le x \le 5$$.
6. Целые значения $$x$$: 2, 3, 4, 5.
б)
1. $$8x - x^2 - 12 \ge 0$$ и $$16 - x^2 \ge 0$$.
2. $$x^2 - 8x + 12 \le 0$$ и $$x^2 \le 16$$.
3. $$(x-2)(x-6) \le 0$$ и $$-4 \le x \le 4$$.
4. $$2 \le x \le 6$$ и $$-4 \le x \le 4$$.
5. Область определения: $$2 \le x \le 4$$.
6. Целые значения $$x$$: 2, 3, 4.
Ответ:
а) 2, 3, 4, 5
б) 2, 3, 4