Вопрос:
1. Упростить:
a) $$(a-4)^2 - a(2a-8)$$
б) $$\frac{x^6 \cdot x^4}{x^2}$$
Ответ:
1. Упростить
a) $$(a-4)^2 - a(2a-8)$$
- Раскрываем скобки, используя формулу квадрата разности: $$(a-4)^2 = a^2 - 2 \cdot a \cdot 4 + 4^2 = a^2 - 8a + 16$$
- Раскрываем скобки во втором слагаемом: $$-a(2a-8) = -2a^2 + 8a$$
- Подставляем полученные выражения в исходное выражение: $$a^2 - 8a + 16 - 2a^2 + 8a$$
- Приводим подобные слагаемые: $$(a^2 - 2a^2) + (-8a + 8a) + 16 = -a^2 + 16$$
Ответ: $$-a^2 + 16$$
б) $$\frac{x^6 \cdot x^4}{x^2}$$
- При умножении степеней с одинаковым основанием показатели складываются: $$x^6 \cdot x^4 = x^{6+4} = x^{10}$$
- При делении степеней с одинаковым основанием показатели вычитаются: $$\frac{x^{10}}{x^2} = x^{10-2} = x^8$$
Ответ: $$x^8$$
Смотреть решения всех заданий с листаПохожие