6. Упростите выражение:
-
\(\frac{8}{12}a + \frac{7}{15}a = \frac{2}{3}a + \frac{7}{15}a = \frac{2\cdot5}{3\cdot5}a + \frac{7}{15}a = \frac{10}{15}a + \frac{7}{15}a = \frac{10+7}{15}a = \frac{17}{15}a = 1\frac{2}{15}a\)
Ответ: \(1\frac{2}{15}a\)
-
\(\frac{6}{13}y - \frac{1}{3}y = \frac{6\cdot3}{13\cdot3}y - \frac{1\cdot13}{3\cdot13}y = \frac{18}{39}y - \frac{13}{39}y = \frac{18-13}{39}y = \frac{5}{39}y\)
Ответ: \(\frac{5}{39}y\)
-
\(\frac{3}{27}t + \frac{4}{18}t = \frac{1}{9}t + \frac{2}{9}t = \frac{1+2}{9}t = \frac{3}{9}t = \frac{1}{3}t\)
Ответ: \(\frac{1}{3}t\)
-
\(3\frac{6}{14}b + 1\frac{3}{21}b = 3\frac{3}{7}b + 1\frac{1}{7}b = (3 + 1) + (\frac{3}{7} + \frac{1}{7})b = 4 + \frac{3+1}{7}b = 4 + \frac{4}{7}b = 4\frac{4}{7}b\)
Ответ: \(4\frac{4}{7}b\)
-
\(f - \frac{3}{7}f = 1f - \frac{3}{7}f = \frac{7}{7}f - \frac{3}{7}f = \frac{7-3}{7}f = \frac{4}{7}f\)
Ответ: \(\frac{4}{7}f\)
-
\(3x - \frac{8}{10}x = 3x - \frac{4}{5}x = \frac{3\cdot5}{1\cdot5}x - \frac{4}{5}x = \frac{15}{5}x - \frac{4}{5}x = \frac{15-4}{5}x = \frac{11}{5}x = 2\frac{1}{5}x\)
Ответ: \(2\frac{1}{5}x\)
-
\(\frac{4}{18}n + (\frac{3}{4}n - \frac{8}{12}n) = \frac{2}{9}n + (\frac{3}{4}n - \frac{2}{3}n) = \frac{2}{9}n + (\frac{3\cdot3}{4\cdot3}n - \frac{2\cdot4}{3\cdot4}n) = \frac{2}{9}n + (\frac{9}{12}n - \frac{8}{12}n) = \frac{2}{9}n + \frac{1}{12}n = \frac{2\cdot4}{9\cdot4}n + \frac{1\cdot3}{12\cdot3}n = \frac{8}{36}n + \frac{3}{36}n = \frac{8+3}{36}n = \frac{11}{36}n\)
Ответ: \(\frac{11}{36}n\)
-
\(\frac{3}{5}c - \frac{2}{35}c + \frac{3}{14}c = \frac{3\cdot14}{5\cdot14}c - \frac{2\cdot2}{35\cdot2}c + \frac{3\cdot5}{14\cdot5}c = \frac{42}{70}c - \frac{4}{70}c + \frac{15}{70}c = \frac{42-4+15}{70}c = \frac{53}{70}c\)
Ответ: \(\frac{53}{70}c\)