1) $$6\sqrt{5} + 3\sqrt{20} - 2\sqrt{45} = 6\sqrt{5} + 3\sqrt{4 \cdot 5} - 2\sqrt{9 \cdot 5} = 6\sqrt{5} + 3 \cdot 2\sqrt{5} - 2 \cdot 3\sqrt{5} = 6\sqrt{5} + 6\sqrt{5} - 6\sqrt{5} = 6\sqrt{5}$$
2) $$( \sqrt{24} - \sqrt{6} ) \sqrt{6} = ( \sqrt{4 \cdot 6} - \sqrt{6} ) \sqrt{6} = (2\sqrt{6} - \sqrt{6} ) \sqrt{6} = \sqrt{6} \cdot \sqrt{6} = 6$$
3) $$(\sqrt{6} - 1)^2 = (\sqrt{6})^2 - 2 \cdot \sqrt{6} \cdot 1 + 1^2 = 6 - 2\sqrt{6} + 1 = 7 - 2\sqrt{6}$$
4) $$(3\sqrt{7} - \sqrt{5}) (3\sqrt{7} + \sqrt{5}) = (3\sqrt{7})^2 - (\sqrt{5})^2 = 9 \cdot 7 - 5 = 63 - 5 = 58$$
Ответ: 1) $$6\sqrt{5}$$; 2) 6; 3) $$7 - 2\sqrt{6}$$; 4) 58