**Решение:**
1. **Упростим выражение:**
\(\frac{1}{5b} - \frac{10b-3a}{15ab} = \frac{3a}{15ab} - \frac{10b-3a}{15ab} = \frac{3a - (10b - 3a)}{15ab} = \frac{3a - 10b + 3a}{15ab} = \frac{6a - 10b}{15ab}\)
\(\frac{6a - 10b}{15ab} = \frac{2(3a - 5b)}{15ab}\)
2. **Подставим значения \(a = \frac{1}{6}\) и \(b = \frac{9}{11}\) в упрощенное выражение:**
\(\frac{2(3(\frac{1}{6}) - 5(\frac{9}{11}))}{15(\frac{1}{6})(\frac{9}{11})} = \frac{2(\frac{1}{2} - \frac{45}{11})}{\frac{15}{1} \cdot \frac{1}{6} \cdot \frac{9}{11}} = \frac{2(\frac{11 - 90}{22})}{\frac{135}{66}} = \frac{2(\frac{-79}{22})}{\frac{135}{66}} = \frac{\frac{-79}{11}}{\frac{45}{22}}
\)
\(\frac{-79}{11} \cdot \frac{22}{45} = \frac{-79}{1} \cdot \frac{2}{45} = \frac{-158}{45}\)
**Ответ:** \(\frac{-158}{45}\)