4. Упростите выражение $$p - \frac{3}{11}p + 2\frac{15}{22}p$$ и найдите его значение при $$p = 1\frac{19}{25}$$
$$p - \frac{3}{11}p + 2\frac{15}{22}p = p(1 - \frac{3}{11} + 2\frac{15}{22}) = p(1 - \frac{3}{11} + \frac{2 \cdot 22 + 15}{22}) = p(1 - \frac{3}{11} + \frac{44 + 15}{22}) = p(1 - \frac{3}{11} + \frac{59}{22}) = p(\frac{1 \cdot 22}{22} - \frac{3 \cdot 2}{11 \cdot 2} + \frac{59}{22}) = p(\frac{22}{22} - \frac{6}{22} + \frac{59}{22}) = p(\frac{22 - 6 + 59}{22}) = p(\frac{16 + 59}{22}) = p(\frac{75}{22})$$
При $$p = 1\frac{19}{25}$$
$$1\frac{19}{25} \cdot \frac{75}{22} = \frac{1 \cdot 25 + 19}{25} \cdot \frac{75}{22} = \frac{25 + 19}{25} \cdot \frac{75}{22} = \frac{44}{25} \cdot \frac{75}{22} = \frac{2 \cdot 22}{25} \cdot \frac{3 \cdot 25}{22} = \frac{2 \cdot \cancel{22} \cdot 3 \cdot \cancel{25}}{\cancel{25} \cdot \cancel{22}} = 2 \cdot 3 = 6$$
Ответ: 6