4. Упростите выражение:
a) $$5\sqrt{2} + 23\sqrt{27} - \sqrt{98} = 5\sqrt{2} + 23\sqrt{9 \\cdot 3} - \sqrt{49 \\cdot 2} = 5\sqrt{2} + 23 \\cdot 3 \sqrt{3} - 7 \sqrt{2} = 5\sqrt{2} + 69\sqrt{3} - 7\sqrt{2} = -2\sqrt{2} + 69\sqrt{3}$$
б) $$(4\sqrt{3} + \sqrt{27})\sqrt{3} = 4\sqrt{3} \\cdot \sqrt{3} + \sqrt{27} \\cdot \sqrt{3} = 4 \\cdot 3 + \sqrt{27 \\cdot 3} = 12 + \sqrt{81} = 12 + 9 = 21$$
в) $$(\sqrt{5} - \sqrt{3})^2 = (\sqrt{5})^2 - 2\sqrt{5}\\sqrt{3} + (\sqrt{3})^2 = 5 - 2\sqrt{15} + 3 = 8 - 2\sqrt{15}$$
Ответ: а) $$-2\sqrt{2} + 69\sqrt{3}$$, б) 21, в) $$8 - 2\sqrt{15}$$