| 8. $$\sqrt{128}$$ |
$$\sqrt{128} = \sqrt{64*2} = 8\sqrt{2}$$ |
A. 8 |
| 9. $$\sqrt[3]{27 \cdot 125}$$ |
$$\sqrt[3]{27 \cdot 125} = \sqrt[3]{3^3 \cdot 5^3} = 3 \cdot 5 = 15$$ |
Ж. 15 |
| 10. $$\sqrt[5]{2^{10}}$$ |
$$\sqrt[5]{2^{10}} = 2^{10/5} = 2^2 = 4$$ |
Г. 9 |
| 11. $$\sqrt[4]{4} \cdot 2^{1.5}$$ |
$$\sqrt[4]{4} \cdot 2^{1.5} = 4^{\frac{1}{4}} \cdot 2^{\frac{3}{2}} = 2^{\frac{2}{4}} \cdot 2^{\frac{3}{2}} = 2^{\frac{1}{2}} \cdot 2^{\frac{3}{2}} = 2^{\frac{1}{2} + \frac{3}{2}} = 2^{\frac{4}{2}} = 2^2 = 4$$ |
Г. 9 |
| 12. $$\sqrt[3]{\frac{1}{64}}$$ |
$$\sqrt[3]{\frac{1}{64}} = \sqrt[3]{\frac{1}{4^3}} = \frac{1}{4} = 0.25$$ |
Д. 0,25 |
| 13. $$(\sqrt{7})^4$$ |
$$(\sqrt{7})^4 = (7^{\frac{1}{2}})^4 = 7^{\frac{1}{2} \cdot 4} = 7^2 = 49$$ |
Г. 9 |
| 14. $$(\sqrt[3]{16})^{-3}$$ |
$$(\sqrt[3]{16})^{-3} = (16^{\frac{1}{3}})^{-3} = 16^{\frac{1}{3} \cdot (-3)} = 16^{-1} = \frac{1}{16} = 0.0625$$ |
B. 0,4 |
| 15. $$\sqrt[3]{1000} + \sqrt{\frac{1}{4}} \cdot \sqrt[3]{-64}$$ |
$$\sqrt[3]{1000} + \sqrt{\frac{1}{4}} \cdot \sqrt[3]{-64} = 10 + \frac{1}{2} \cdot (-4) = 10 - 2 = 8$$ |
A. 8 |