Пусть $$MNPK$$ - трапеция, $$NF || PK$$, точка $$F$$ лежит на $$MK$$. Так как $$NFKP$$ - параллелограмм, то $$NF = PK$$ и $$NP = FK$$. Также $$\angle K = \angle NFM = 40°$$ и $$\angle P = \angle FNP$$.
В треугольнике $$MNF$$:\
$$\angle M = 40°$$\
$$\angle N = 75°$$\
$$\angle F = 180° - (40° + 75°) = 180° - 115° = 65°$$\
$$\angle N = \angle MNK = \angle MNF + \angle FNK = 75° + \angle FNK $$\
$$\angle MNK = 75° + \angle K = 75° + \angle NFM = 75° + 40° = 115°$$\
$$\angle N = 115°$$\
$$\angle M + \angle N = 180°$$\
$$\angle P = 180° - \angle K = 180° - 40° = 140°$$\
$$\angle M = \angle MNK = 40°$$\
$$\angle MNK = 115°$$\
$$\angle P = \angle P + \angle P = 140°$$\
$$\angle K = \angle FNP = 40°$$
Ответ: $$\angle M = 40°$$, $$\angle N = 115°$$, $$\angle P = 140°$$, $$\angle K = 40°$$.