Вопрос:

Вариант 3. Дан график функции y = h(x). 1. Укажите область определения и область значений функции. 2. Найдите по графику: h(-3), h(0), h(5). 3. Найдите по графику значения x, при которых h(x)=-3, h(x) = 0. 4. Укажите интервалы, на которых функция положительна. 5. Запишите промежутки возрастания функции.

Ответ:

Здравствуйте, ребята! Давайте решим эту задачу вместе. 1. Область определения и область значений функции * Область определения (D(h)): Это множество всех допустимых значений x. По графику видно, что функция определена на отрезке от -5 до 5 включительно. Значит, D(h) = [-5; 5]. * Область значений (E(h)): Это множество всех значений, которые принимает функция. По графику видно, что наименьшее значение функции равно -3, а наибольшее – 6. Значит, E(h) = [-3; 6]. 2. Значения функции в заданных точках * h(-3): Находим на оси x точку -3 и смотрим, какое значение принимает функция в этой точке. По графику h(-3) = 5. * h(0): Аналогично, находим на оси x точку 0 и видим, что h(0) = 3. * h(5): Находим на оси x точку 5 и видим, что h(5) = 6. 3. Значения x, при которых функция принимает заданные значения * h(x) = -3: Находим на оси y точку -3 и смотрим, при каких значениях x функция принимает это значение. По графику h(x) = -3 при x = -1 и x = 3. * h(x) = 0: Находим на оси y точку 0 и смотрим, при каких значениях x функция принимает это значение. По графику h(x) = 0 при x = -2 и x = 2. 4. Интервалы, на которых функция положительна Функция положительна, когда ее график находится выше оси x. По графику это интервалы: (-5; -2), (2; 5). 5. Промежутки возрастания функции Функция возрастает, когда ее график идет вверх слева направо. По графику это промежутки: (-1; 0) и (3; 5). Ответы: 1. D(h) = [-5; 5], E(h) = [-3; 6] 2. h(-3) = 5, h(0) = 3, h(5) = 6 3. h(x) = -3 при x = -1 и x = 3; h(x) = 0 при x = -2 и x = 2 4. (-5; -2), (2; 5) 5. (-1; 0), (3; 5)
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие