Ответ: $$\frac{8}{2 - x}$$
б) $$\frac{m - n}{2mn} + \frac{2}{m - n} = \frac{(m - n)^2 + 4mn}{2mn(m - n)} = \frac{m^2 - 2mn + n^2 + 4mn}{2mn(m - n)} = \frac{m^2 + 2mn + n^2}{2mn(m - n)} = \frac{(m + n)^2}{2mn(m - n)}$$Ответ: $$\frac{(m + n)^2}{2mn(m - n)}$$
в) $$\frac{p + 3}{p + 4} - \frac{p - 3}{p - 4} = \frac{(p + 3)(p - 4) - (p - 3)(p + 4)}{(p + 4)(p - 4)} = \frac{p^2 - 4p + 3p - 12 - (p^2 + 4p - 3p - 12)}{p^2 - 16} = \frac{p^2 - p - 12 - p^2 - p + 12}{p^2 - 16} = \frac{-2p}{p^2 - 16}$$Ответ: $$\frac{-2p}{p^2 - 16}$$
г) $$\frac{7p + q}{p^2 - pq} + \frac{p + 7q}{q^2 - pq} = \frac{7p + q}{p(p - q)} + \frac{p + 7q}{q(q - p)} = \frac{7p + q}{p(p - q)} - \frac{p + 7q}{q(p - q)} = \frac{q(7p + q) - p(p + 7q)}{pq(p - q)} = \frac{7pq + q^2 - p^2 - 7pq}{pq(p - q)} = \frac{q^2 - p^2}{pq(p - q)} = \frac{(q - p)(q + p)}{pq(p - q)} = \frac{-(p - q)(p + q)}{pq(p - q)} = \frac{-(p + q)}{pq} = -\frac{p + q}{pq}$$Ответ: $$\frac{-(p + q)}{pq}$$