Решим №1 Варианта 2.
a) $$ \sqrt{324 \cdot 0,5} = \sqrt{162} = \sqrt{81 \cdot 2} = 9\sqrt{2} $$
б) $$ \sqrt{81 \cdot 0,49} = \sqrt{81} \cdot \sqrt{0,49} = 9 \cdot 0,7 = 6,3 $$
в) $$ \sqrt{5 \frac{1}{16}} = \sqrt{\frac{5 \cdot 16 + 1}{16}} = \sqrt{\frac{81}{16}} = \frac{\sqrt{81}}{\sqrt{16}} = \frac{9}{4} = 2,25 $$
г) $$ \frac{\sqrt{15} \cdot \sqrt{6} \cdot \sqrt{10}}{3} = \frac{\sqrt{15 \cdot 6 \cdot 10}}{3} = \frac{\sqrt{900}}{3} = \frac{30}{3} = 10 $$
д) $$ \frac{\sqrt{121}}{\sqrt{36}} = \frac{11}{6} = 1 \frac{5}{6} $$
e) $$ \frac{\sqrt{64 \cdot 9}}{\sqrt{9 \cdot 49}} = \frac{\sqrt{64} \cdot \sqrt{9}}{\sqrt{9} \cdot \sqrt{49}} = \frac{8 \cdot 3}{3 \cdot 7} = \frac{8}{7} = 1 \frac{1}{7} $$
Ответ: а) $$9\sqrt{2}$$, б) $$6,3$$, в) $$2,25$$, г) $$10$$, д) $$1 \frac{5}{6}$$, е) $$1 \frac{1}{7}$$