Контрольные задания > 1 вариант
1. Сравните числа:
a) \(\frac{11}{20}\) и \(\frac{7}{12}\);
б) \(\frac{11}{18}\) и \(\frac{11}{19}\);
в) 0,48 и \(\frac{25}{24}\).
2. Найдите значение выражения:
a) \(\frac{11}{50} - \frac{3}{25} + \frac{1}{20}\);
б) 8 - 3\(\frac{6}{7}\);
в) 2\(\frac{5}{8} + 3\frac{1}{12}\);
г) 5\frac{13}{15} + 1\frac{7}{12}\);
д) 7\frac{3}{8} - 3\frac{5}{6}\).
3. На автомашине планировали перевезти сначала 3\(\frac{8}{9}\) т груза, а потом ещё 2\(\frac{11}{18}\) т. Однако перевезли на 1\(\frac{1}{4}\) т меньше, чем предполагали. Сколько всего тонн груза перевезли на автомашине?
4. Решите уравнение: а) \(x - 2\frac{8}{15} = 3\frac{7}{12}\);
б) 3,45 × (2,08 - k) = 6,21.
Вопрос:
1 вариант
1. Сравните числа:
a) \(\frac{11}{20}\) и \(\frac{7}{12}\);
б) \(\frac{11}{18}\) и \(\frac{11}{19}\);
в) 0,48 и \(\frac{25}{24}\).
2. Найдите значение выражения:
a) \(\frac{11}{50} - \frac{3}{25} + \frac{1}{20}\);
б) 8 - 3\(\frac{6}{7}\);
в) 2\(\frac{5}{8} + 3\frac{1}{12}\);
г) 5\frac{13}{15} + 1\frac{7}{12}\);
д) 7\frac{3}{8} - 3\frac{5}{6}\).
3. На автомашине планировали перевезти сначала 3\(\frac{8}{9}\) т груза, а потом ещё 2\(\frac{11}{18}\) т. Однако перевезли на 1\(\frac{1}{4}\) т меньше, чем предполагали. Сколько всего тонн груза перевезли на автомашине?
4. Решите уравнение: а) \(x - 2\frac{8}{15} = 3\frac{7}{12}\);
б) 3,45 × (2,08 - k) = 6,21.
Ответ:
Решение:
Сравните числа:
а) \(\frac{11}{20}\) и \(\frac{7}{12}\). Приведем дроби к общему знаменателю 60: \(\frac{11}{20} = \frac{11 \cdot 3}{20 \cdot 3} = \frac{33}{60}\); \(\frac{7}{12} = \frac{7 \cdot 5}{12 \cdot 5} = \frac{35}{60}\). Так как \(\frac{33}{60} < \frac{35}{60}\), то \(\frac{11}{20} < \frac{7}{12}\).
б) \(\frac{11}{18}\) и \(\frac{11}{19}\). У дробей одинаковые числители. Больше та дробь, у которой знаменатель меньше. Так как 18 < 19, то \(\frac{11}{18} > \frac{11}{19}\).
в) 0,48 и \(\frac{25}{24}\). Представим 0,48 в виде обыкновенной дроби: 0,48 = \(\frac{48}{100} = \frac{12}{25}\). Сравним \(\frac{12}{25}\) и \(\frac{25}{24}\). Так как \(\frac{12}{25} < 1\) и \(\frac{25}{24} > 1\), то \(0,48 < \frac{25}{24}\).
На автомашине планировали перевезти сначала 3\(\frac{8}{9}\) т груза, а потом ещё 2\(\frac{11}{18}\) т. Всего планировали перевезти: 3\(\frac{8}{9} + 2\frac{11}{18} = 3\frac{16}{18} + 2\frac{11}{18} = 5\frac{27}{18} = 6\frac{9}{18} = 6\frac{1}{2}\) т. Фактически перевезли на 1\(\frac{1}{4}\) т меньше, чем предполагали. Тогда всего перевезли: 6\(\frac{1}{2} - 1\frac{1}{4} = 6\frac{2}{4} - 1\frac{1}{4} = 5\frac{1}{4}\) т.