Разберем пример по действиям:
- Деление $$2:\frac{3}{5}$$: Чтобы разделить число на дробь, нужно умножить это число на перевернутую дробь. Переворачиваем $$rac{3}{5}$$ и получаем $$rac{5}{3}$$.
$$2:\frac{3}{5} = 2 \cdot \frac{5}{3} = \frac{2 \cdot 5}{3} = \frac{10}{3} = 3\frac{1}{3}$$
- Деление $$\frac{3}{5}:2$$: Чтобы разделить дробь на число, нужно умножить знаменатель дроби на это число.
$$\frac{3}{5}:2 = \frac{3}{5 \cdot 2} = \frac{3}{10}$$
- Преобразуем смешанное число $$2+1\frac{1}{2}$$ в неправильную дробь. Сначала умножим целую часть (1) на знаменатель (2) и прибавим числитель (1). Получим новый числитель. Знаменатель остаётся прежним.
$$1\frac{1}{2} = \frac{1 \cdot 2 + 1}{2} = \frac{3}{2}$$
Теперь можем сложить: $$2 + \frac{3}{2} = \frac{4}{2} + \frac{3}{2} = \frac{7}{2}$$
- Деление $$\frac{7}{2}:6$$: Чтобы разделить дробь на число, нужно умножить знаменатель дроби на это число.
$$\frac{7}{2}:6 = \frac{7}{2 \cdot 6} = \frac{7}{12}$$
- Преобразуем смешанное число $$1\frac{1}{2}$$ в неправильную дробь (как в пункте 3):
$$1\frac{1}{2} = \frac{1 \cdot 2 + 1}{2} = \frac{3}{2}$$
- Деление $$6:\frac{3}{2}$$: Чтобы разделить число на дробь, нужно умножить это число на перевернутую дробь. Переворачиваем $$\frac{3}{2}$$ и получаем $$\frac{2}{3}$$.
$$6:\frac{3}{2} = 6 \cdot \frac{2}{3} = \frac{6 \cdot 2}{3} = \frac{12}{3} = 4$$
- Сложим все результаты:
$$3\frac{1}{3} + \frac{3}{10} + \frac{7}{12} + 4 = 3\frac{1}{3} + \frac{3}{10} + \frac{7}{12} + 4 = 7 + \frac{1}{3} + \frac{3}{10} + \frac{7}{12}$$
Приведем дроби к общему знаменателю. Общий знаменатель для 3, 10 и 12 будет 60.
$$\frac{1}{3} = \frac{1 \cdot 20}{3 \cdot 20} = \frac{20}{60}$$
$$\frac{3}{10} = \frac{3 \cdot 6}{10 \cdot 6} = \frac{18}{60}$$
$$\frac{7}{12} = \frac{7 \cdot 5}{12 \cdot 5} = \frac{35}{60}$$
Теперь сложим дроби:
$$\frac{20}{60} + \frac{18}{60} + \frac{35}{60} = \frac{20 + 18 + 35}{60} = \frac{73}{60} = 1\frac{13}{60}$$
И, наконец, сложим целую часть:
$$7 + 1\frac{13}{60} = 8\frac{13}{60}$$
Итоговый ответ:
$$8\frac{13}{60}$$