1) $$(8 \cdot 2^{-7})^6 \cdot (128^{-3})^{-1} = (2^3 \cdot 2^{-7})^6 \cdot (2^{7 \cdot (-3)})^{-1} = (2^{-4})^6 \cdot (2^{-21})^{-1} = 2^{-24} \cdot 2^{21} = 2^{-24+21} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$
2) $$\frac{(625)^{-5} \cdot 25^{-4}}{125^{-9}} = \frac{(5^4)^{-5} \cdot (5^2)^{-4}}{(5^3)^{-9}} = \frac{5^{-20} \cdot 5^{-8}}{5^{-27}} = \frac{5^{-28}}{5^{-27}} = 5^{-28 - (-27)} = 5^{-28+27} = 5^{-1} = \frac{1}{5}$$
Ответ: 1) 1/8; 2) 1/5