Задание 1:
$$y = (2x - 3)$$ $$y' = 2$$
$$y = (3x + \frac{1}{2})$$ $$y' = 3$$
$$y = (-2 + 3x)$$ $$y' = 3$$
$$y = (\frac{x}{3} + 4)$$ $$y' = \frac{1}{3}$$
$$y = x^{15}$$ $$y' = 15x^{14}$$
$$y = x^{-4}$$ $$y' = -4x^{-5}$$
$$y = \frac{1}{7}x^7$$ $$y' = x^6$$
$$y = 2x^4$$ $$y' = 8x^3$$
$$y = 2x^{-3}$$ $$y' = -6x^{-4}$$
$$y = \frac{1}{x} = x^{-1}$$ $$y' = -x^{-2} = -\frac{1}{x^2}$$
$$y = \frac{3}{x^6} = 3x^{-6}$$ $$y' = -18x^{-7} = -\frac{18}{x^7}$$
$$y = \frac{5}{x^3} = 5x^{-3}$$ $$y' = -15x^{-4} = -\frac{15}{x^4}$$
Задание 2:
$$f(x) = x - 0.5x^8 + x^3$$ $$f'(x) = 1 - 4x^7 + 3x^2$$
$$f(x) = 2x - x^2 + \frac{1}{3}x^3$$ $$f'(x) = 2 - 2x + x^2$$
$$f(x) = \frac{1}{5}x^5 - 3\sqrt{x} + 3$$ $$f'(x) = x^4 - \frac{3}{2\sqrt{x}}$$
$$f(x) = \sin{x} + \tan{x}$$ $$f'(x) = \cos{x} + \frac{1}{\cos^2{x}}$$
$$f(x) = \cos{x} - 3x + 0.1$$ $$f'(x) = -\sin{x} - 3$$
Задание 3:
$$f(x) = x^3 \cos{x}$$ $$f'(x) = 3x^2 \cos{x} - x^3 \sin{x}$$
$$f(x) = e^x \ln{x}$$ $$f'(x) = e^x \ln{x} + \frac{e^x}{x}$$