Конечно, давай вычислим все эти выражения по порядку:
1. $$3^3 = 3 \cdot 3 \cdot 3 = 27$$
2. $$-3^3 = -(3 \cdot 3 \cdot 3) = -27$$
3. $$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 81$$
4. $$(-3)^4 = (-3) \cdot (-3) \cdot (-3) \cdot (-3) = 81$$
5. $$-3^4 = -(3 \cdot 3 \cdot 3 \cdot 3) = -81$$
6. $$1^8 = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$$
7. $$(-1)^8 = (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) = 1$$
8. $$(0,3)^2 = 0,3 \cdot 0,3 = 0,09$$
9. $$(0,3)^3 = 0,3 \cdot 0,3 \cdot 0,3 = 0,027$$
10. $$(-\frac{2}{5})^3 = -\frac{2^3}{5^3} = -\frac{8}{125} = -0,064$$
11. $$(1\frac{1}{4})^2 = (\frac{5}{4})^2 = \frac{5^2}{4^2} = \frac{25}{16} = 1\frac{9}{16} = 1,5625$$
12. $$20^4 \cdot (\frac{1}{10})^4 = (20 \cdot \frac{1}{10})^4 = 2^4 = 16$$
13. $$\frac{10^8}{2^6 \cdot 5^6} = \frac{(2 \cdot 5)^8}{2^6 \cdot 5^6} = \frac{2^8 \cdot 5^8}{2^6 \cdot 5^6} = 2^{8-6} \cdot 5^{8-6} = 2^2 \cdot 5^2 = 4 \cdot 25 = 100$$
14. $$\frac{14^5}{7^5} = (\frac{14}{7})^5 = 2^5 = 32$$
Вот и все вычисления!
Ответы:
* $$3^3 = 27$$
* $$-3^3 = -27$$
* $$3^4 = 81$$
* $$(-3)^4 = 81$$
* $$-3^4 = -81$$
* $$1^8 = 1$$
* $$(-1)^8 = 1$$
* $$(0,3)^2 = 0,09$$
* $$(0,3)^3 = 0,027$$
* $$(-\frac{2}{5})^3 = -0,064$$
* $$(1\frac{1}{4})^2 = 1,5625$$
* $$20^4 \cdot (\frac{1}{10})^4 = 16$$
* $$\frac{10^8}{2^6 \cdot 5^6} = 100$$
* $$\frac{14^5}{7^5} = 32