4. Вычисляем:
a) (\frac{32^2 cdot 2^5}{2^{12}} = \frac{(2^5)^2 cdot 2^5}{2^{12}} = \frac{2^{10} cdot 2^5}{2^{12}} = \frac{2^{15}}{2^{12}} = 2^{15-12} = 2^3 = 8)
б) (\frac{3^5 cdot 4^5}{12^3} = \frac{3^5 cdot (2^2)^5}{(3 cdot 4)^3} = \frac{3^5 cdot 2^{10}}{3^3 cdot 4^3} = \frac{3^5 cdot 2^{10}}{3^3 cdot (2^2)^3} = \frac{3^5 cdot 2^{10}}{3^3 cdot 2^6} = 3^{5-3} cdot 2^{10-6} = 3^2 cdot 2^4 = 9 cdot 16 = 144)