Вопрос:

Вычислите: д) $$28\frac{5}{9} + 13\frac{3}{4}$$; ж) $$9 + 2\frac{2}{9}$$; e) $$\frac{4}{7} + 2\frac{3}{5}$$; з) $$3\frac{11}{24} + \frac{1}{6}$$; д) $$4\frac{9}{16} - 2\frac{3}{14}$$; ж) $$17\frac{2}{3} - 6\frac{7}{8}$$; e) $$11\frac{7}{32} - 9\frac{11}{64}$$; з) $$24\frac{7}{15} - 15\frac{5}{12}$$

Ответ:

Решение примеров:

  1. д) $$28\frac{5}{9} + 13\frac{3}{4} = 28 + 13 + \frac{5}{9} + \frac{3}{4} = 41 + \frac{5\cdot4 + 3\cdot9}{36} = 41 + \frac{20 + 27}{36} = 41 + \frac{47}{36} = 41 + 1\frac{11}{36} = 42\frac{11}{36}$$

  2. ж) $$9 + 2\frac{2}{9} = 9 + 2 + \frac{2}{9} = 11\frac{2}{9}$$

  3. е) $$\frac{4}{7} + 2\frac{3}{5} = 2 + \frac{4}{7} + \frac{3}{5} = 2 + \frac{4\cdot5 + 3\cdot7}{35} = 2 + \frac{20 + 21}{35} = 2 + \frac{41}{35} = 2 + 1\frac{6}{35} = 3\frac{6}{35}$$

  4. з) $$3\frac{11}{24} + \frac{1}{6} = 3 + \frac{11}{24} + \frac{1}{6} = 3 + \frac{11 + 1\cdot4}{24} = 3 + \frac{11 + 4}{24} = 3 + \frac{15}{24} = 3 + \frac{5}{8} = 3\frac{5}{8}$$

  5. д) $$4\frac{9}{16} - 2\frac{3}{14} = 4 - 2 + \frac{9}{16} - \frac{3}{14} = 2 + \frac{9\cdot7 - 3\cdot8}{112} = 2 + \frac{63 - 24}{112} = 2 + \frac{39}{112} = 2\frac{39}{112}$$

  6. ж) $$17\frac{2}{3} - 6\frac{7}{8} = 17 - 6 + \frac{2}{3} - \frac{7}{8} = 11 + \frac{2\cdot8 - 7\cdot3}{24} = 11 + \frac{16 - 21}{24} = 11 - \frac{5}{24} = 10 + 1 - \frac{5}{24} = 10 + \frac{24 - 5}{24} = 10\frac{19}{24}$$

  7. е) $$11\frac{7}{32} - 9\frac{11}{64} = 11 - 9 + \frac{7}{32} - \frac{11}{64} = 2 + \frac{7\cdot2 - 11}{64} = 2 + \frac{14 - 11}{64} = 2 + \frac{3}{64} = 2\frac{3}{64}$$

  8. з) $$24\frac{7}{15} - 15\frac{5}{12} = 24 - 15 + \frac{7}{15} - \frac{5}{12} = 9 + \frac{7\cdot4 - 5\cdot5}{60} = 9 + \frac{28 - 25}{60} = 9 + \frac{3}{60} = 9 + \frac{1}{20} = 9\frac{1}{20}$$

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие