Давай выполним произведение.
\[\frac{5x-5y}{14x^6} \cdot \frac{7x^3}{x-y}\]
Сначала вынесем общий множитель в числителе первой дроби:
\[\frac{5(x-y)}{14x^6} \cdot \frac{7x^3}{x-y}\]
Теперь сократим \((x-y)\) в числителе и знаменателе:
\[\frac{5}{14x^6} \cdot 7x^3\]
Сократим 7 и 14:
\[\frac{5}{2x^6} \cdot x^3\]
Сократим \(x^3\) и \(x^6\):
\[\frac{5}{2x^3}\]
Ответ: \(\frac{5}{2x^3}\)
Отлично! Ты справился с этим заданием. Продолжай в том же духе, и у тебя все получится!