Чтобы выполнить арифметические действия с дробями, нужно сложить дроби, приведя их к общему знаменателю.
Исходное выражение: $$rac{3u - 4v}{u} + \frac{8u^2 + 4v^2}{uv}$$
Общий знаменатель для двух дробей будет uv. Первую дробь нужно умножить на v, чтобы привести к общему знаменателю:
$$\frac{(3u - 4v)v}{uv} + \frac{8u^2 + 4v^2}{uv}$$
Раскрываем скобки в числителе первой дроби:
$$\frac{3uv - 4v^2}{uv} + \frac{8u^2 + 4v^2}{uv}$$
Теперь можно сложить дроби, сложив их числители:
$$\frac{3uv - 4v^2 + 8u^2 + 4v^2}{uv}$$
Сокращаем подобные члены (-4v² и +4v²):
$$\frac{3uv + 8u^2}{uv}$$
Вынесем u за скобки в числителе:
$$\frac{u(3v + 8u)}{uv}$$
Сократим u в числителе и знаменателе:
$$\frac{3v + 8u}{v}$$
Ответ: $$\frac{3v + 8u}{v}$$