Вопрос:

Задание 2. Представьте в виде дроби: а) $$ \frac{25x^2p}{y^3} \cdot \frac{y^6}{15x^8} $$; б) $$ \frac{7x+7y}{a^4} \cdot \frac{6a^8}{x^2-y^2} $$; в) $$ \frac{30m^2}{n} : (6m^{10}n^2) $$; г) $$ \frac{4a^2-1}{4a-12} \cdot \frac{6a+3}{a-3} $$

Ответ:

Задание 2. Представьте в виде дроби:

  • а) $$ \frac{25x^2p}{y^3} \cdot \frac{y^6}{15x^8} = \frac{25x^2py^6}{15x^8y^3} = \frac{5py^3}{3x^6} $$
  • б) $$ \frac{7x+7y}{a^4} \cdot \frac{6a^8}{x^2-y^2} = \frac{7(x+y)6a^8}{a^4(x-y)(x+y)} = \frac{42a^4}{x-y} $$
  • в) $$ \frac{30m^2}{n} : (6m^{10}n^2) = \frac{30m^2}{n} \cdot \frac{1}{6m^{10}n^2} = \frac{5}{m^8n^3} $$
  • г) $$ \frac{4a^2-1}{4a-12} \cdot \frac{6a+3}{a-3} = \frac{(2a-1)(2a+1)}{4(a-3)} \cdot \frac{3(2a+1)}{a-3} = \frac{3(2a-1)(2a+1)^2}{4(a-3)^2} $$
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие