Разложение разности квадратов на множители
Используем формулу разности квадратов: $$a^2 - b^2 = (a - b)(a + b)$$.
- $$x^2 - y^2 = (x - y)(x + y)$$
- $$a^2 - h^2 = (a - h)(a + h)$$
- $$c^2 - 3^2 = (c - 3)(c + 3)$$
- $$4^2 - p^2 = (4 - p)(4 + p)$$
- $$25 - b^2 = (5 - b)(5 + b)$$
- $$n^2 - 1 = (n - 1)(n + 1)$$
- $$m^2 - (3x)^2 = (m - 3x)(m + 3x)$$
- $$(2a)^2 - y^2 = (2a - y)(2a + y)$$
- $$121s^2 - 225a^2 = (11s - 15a)(11s + 15a)$$
- $$1,44q^2 - 25c^2 = (1.2q - 5c)(1.2q + 5c)$$
- $$196m^2 - 0,36n^2 = (14m - 0.6n)(14m + 0.6n)$$
- $$x^2y^2 - 4 = (xy - 2)(xy + 2)$$
- $$16a^4 - 9b^2 = (4a^2 - 3b)(4a^2 + 3b)$$
- $$36p^6 - n^2m^{10} = (6p^3 - nm^5)(6p^3 + nm^5)$$
- $$169k^4 - 4p^6 = (13k^2 - 2p^3)(13k^2 + 2p^3)$$
- $$0,09a^2 - 100b^4 = (0.3a - 10b^2)(0.3a + 10b^2)$$