a) $$(x^2 + y)(x + y^2) = x^3 + x^2y^2 + xy + y^3$$
б) $$(m^2 - n)(m^2 + 2n^2) = m^4 + 2m^2n^2 - nm^2 - 2n^3 = m^4 + m^2n^2 - 2n^3$$
в) $$(4a^2 + b^2)(3a^2 - b^2) = 12a^4 - 4a^2b^2 + 3a^2b^2 - b^4 = 12a^4 - a^2b^2 - b^4$$
г) $$(5x^2 - 4x)(x + 1) = 5x^3 + 5x^2 - 4x^2 - 4x = 5x^3 + x^2 - 4x$$
д) $$(a - 2)(4a^3 - 3a^2) = 4a^4 - 3a^3 - 8a^3 + 6a^2 = 4a^4 - 11a^3 + 6a^2$$
e) $$(7p^2 - 2p)(8p - 5) = 56p^3 - 35p^2 - 16p^2 + 10p = 56p^3 - 51p^2 + 10p$$
Ответ: a) $$x^3 + x^2y^2 + xy + y^3$$, б) $$m^4 + m^2n^2 - 2n^3$$, в) $$12a^4 - a^2b^2 - b^4$$, г) $$5x^3 + x^2 - 4x$$, д) $$4a^4 - 11a^3 + 6a^2$$, e) $$56p^3 - 51p^2 + 10p$$