Конечно, давай заполним таблицу истинности для логического выражения \(K = M \lor B \land \overline{(M \land C)}\).
Вот шаги, которые мы выполним:
1. Вычислим \(M \land C\).
2. Вычислим \(\overline{(M \land C)}\).
3. Вычислим \(B \land \overline{(M \land C)}\).
4. Вычислим \(M \lor (B \land \overline{(M \land C)})\), что и есть \(K\).
Давай построим таблицу:
| M | B | C | M ∧ C | ‾(M ∧ C) | B ∧ ‾(M ∧ C) | K = M ∨ (B ∧ ‾(M ∧ C)) |
|---|---|---|-------|--------|--------------|---------------------------|
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 |
**Разъяснение по строкам:**
* **Строка 1 (M=0, B=0, C=0):**
* \(M \land C = 0 \land 0 = 0\)
* \(\overline{(M \land C)} = \overline{0} = 1\)
* \(B \land \overline{(M \land C)} = 0 \land 1 = 0\)
* \(K = M \lor (B \land \overline{(M \land C)}) = 0 \lor 0 = 0\)
* **Строка 2 (M=0, B=0, C=1):**
* \(M \land C = 0 \land 1 = 0\)
* \(\overline{(M \land C)} = \overline{0} = 1\)
* \(B \land \overline{(M \land C)} = 0 \land 1 = 0\)
* \(K = M \lor (B \land \overline{(M \land C)}) = 0 \lor 0 = 0\)
* **Строка 3 (M=0, B=1, C=0):**
* \(M \land C = 0 \land 0 = 0\)
* \(\overline{(M \land C)} = \overline{0} = 1\)
* \(B \land \overline{(M \land C)} = 1 \land 1 = 1\)
* \(K = M \lor (B \land \overline{(M \land C)}) = 0 \lor 1 = 1\)
* **Строка 4 (M=0, B=1, C=1):**
* \(M \land C = 0 \land 1 = 0\)
* \(\overline{(M \land C)} = \overline{0} = 1\)
* \(B \land \overline{(M \land C)} = 1 \land 1 = 1\)
* \(K = M \lor (B \land \overline{(M \land C)}) = 0 \lor 1 = 1\)
* **Строка 5 (M=1, B=0, C=0):**
* \(M \land C = 1 \land 0 = 0\)
* \(\overline{(M \land C)} = \overline{0} = 1\)
* \(B \land \overline{(M \land C)} = 0 \land 1 = 0\)
* \(K = M \lor (B \land \overline{(M \land C)}) = 1 \lor 0 = 1\)
* **Строка 6 (M=1, B=0, C=1):**
* \(M \land C = 1 \land 1 = 1\)
* \(\overline{(M \land C)} = \overline{1} = 0\)
* \(B \land \overline{(M \land C)} = 0 \land 0 = 0\)
* \(K = M \lor (B \land \overline{(M \land C)}) = 1 \lor 0 = 1\)
* **Строка 7 (M=1, B=1, C=0):**
* \(M \land C = 1 \land 0 = 0\)
* \(\overline{(M \land C)} = \overline{0} = 1\)
* \(B \land \overline{(M \land C)} = 1 \land 1 = 1\)
* \(K = M \lor (B \land \overline{(M \land C)}) = 1 \lor 1 = 1\)
* **Строка 8 (M=1, B=1, C=1):**
* \(M \land C = 1 \land 1 = 1\)
* \(\overline{(M \land C)} = \overline{1} = 0\)
* \(B \land \overline{(M \land C)} = 1 \land 0 = 0\)
* \(K = M \lor (B \land \overline{(M \land C)}) = 1 \lor 0 = 1\)
Таблица истинности заполнена.