Таблица истинности для $$(A \lor
eg B \rightarrow
eg C) \land C$$:
| A | B | C | $$
eg B$$ | $$
eg C$$ | $$A \lor
eg B$$ | $$A \lor
eg B \rightarrow
eg C$$ | $$(A \lor
eg B \rightarrow
eg C) \land C$$ |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
Ответ:
| A | B | C | (A v -B -> -C) ^ C |
|---|---|---|-------------------|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |