Решим уравнения:
a) \(7x^2 - 9x + 2 = 0\)
Дискриминант \(D = (-9)^2 - 4 \times 7 \times 2 = 81 - 56 = 25\)
\(x_1 = \frac{9 + \sqrt{25}}{2 \times 7} = \frac{9 + 5}{14} = \frac{14}{14} = 1\)
\(x_2 = \frac{9 - \sqrt{25}}{2 \times 7} = \frac{9 - 5}{14} = \frac{4}{14} = \frac{2}{7}\)
б) \(5x^2 = 12x\)
\(5x^2 - 12x = 0\)
\(x(5x - 12) = 0\)
\(x_1 = 0\)
\(5x - 12 = 0\)
\(5x = 12\)
\(x_2 = \frac{12}{5} = 2.4\)
в) \(7x^2 - 28 = 0\)
\(7x^2 = 28\)
\(x^2 = \frac{28}{7} = 4\)
\(x = \pm \sqrt{4}\)
\(x_1 = 2, x_2 = -2\)
г) \(x^2 + 20x + 91 = 0\)
Дискриминант \(D = 20^2 - 4 \times 1 \times 91 = 400 - 364 = 36\)
\(x_1 = \frac{-20 + \sqrt{36}}{2 \times 1} = \frac{-20 + 6}{2} = \frac{-14}{2} = -7\)
\(x_2 = \frac{-20 - \sqrt{36}}{2 \times 1} = \frac{-20 - 6}{2} = \frac{-26}{2} = -13\)
Ответ: а) \(x_1 = 1\), \(x_2 = \frac{2}{7}\); б) \(x_1 = 0\), \(x_2 = 2.4\); в) \(x_1 = 2\), \(x_2 = -2\); г) \(x_1 = -7\), \(x_2 = -13\)