Вопрос:

№7. Равнобедренный треугольник имеет основание 12 см. Боковая сторона выражается целым числом сантиметров. Какие наименьшее и наибольшее целые значения может принимать боковая сторона?

Смотреть решения всех заданий с листа

Ответ:

В равнобедренном треугольнике боковые стороны равны.

Сумма двух сторон треугольника всегда должна быть больше третьей стороны (неравенство треугольника).

Пусть x - боковая сторона.

Тогда x + x > 12

2x > 12

x > 6

Наименьшее целое значение боковой стороны: 7 см.

Пусть x - основание, y - боковая сторона. Тогда y + 12 > y. Это верно при любом y.

Пусть y - боковая сторона. Тогда y + y > 12

2y > 12

y > 6

y может быть любым числом, кроме бесконечности.

Т.к. размеры листа ограничены, то и треугольник не может быть бесконечно большим. Боковая сторона должна быть разумной, а также боковая сторона должна быть больше половины основания.

Наибольшее целое значение боковой стороны: определить невозможно.

Ответ: наименьшее целое значение: 7 см, наибольшее целое значение определить невозможно.

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие