1) A (2; 3), B (3; 2)
Используем формулу:
\[\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}\]
\[\frac{y - 3}{x - 2} = \frac{2 - 3}{3 - 2}\]
\[\frac{y - 3}{x - 2} = \frac{-1}{1}\]
\[y - 3 = -1(x - 2)\]
\[y - 3 = -x + 2\]
\[x + y - 5 = 0\]
Уравнение прямой: [x + y - 5 = 0].
2) A (4; -1), B (-6; 2)
\[\frac{y - (-1)}{x - 4} = \frac{2 - (-1)}{-6 - 4}\]
\[\frac{y + 1}{x - 4} = \frac{3}{-10}\]
\[-10(y + 1) = 3(x - 4)\]
\[-10y - 10 = 3x - 12\]
\[3x + 10y - 2 = 0\]
Уравнение прямой: [3x + 10y + 2 = 0].
3) A (5; -3), B (-1; -2)
\[\frac{y - (-3)}{x - 5} = \frac{-2 - (-3)}{-1 - 5}\]
\[\frac{y + 3}{x - 5} = \frac{1}{-6}\]
\[-6(y + 3) = 1(x - 5)\]
\[-6y - 18 = x - 5\]
\[x + 6y + 13 = 0\]
Уравнение прямой: [x + 6y + 13 = 0].